22 research outputs found

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Intensification of Photobiocatalytic Decarboxylation of Fatty Acids for the Production of Biodiesel

    No full text
    Light-driven biocatalytic processes are notoriously hampered by poor penetration of light into the turbid reaction media. In this study, wirelessly powered light-emitting diodes are found to represent an efficient and scalable approach for process intensification of the photobiosynthetic production of diesel alkanes from renewable fatty acids.BT/Biocatalysi

    A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters

    No full text
    The nuclear retinoic acid (RA) receptor alpha (RARα) is a transcriptional transregulator that controls the expression of specific gene subsets through binding at response elements and dynamic interactions with coregulators, which are coordinated by the ligand. Here, we highlighted a novel paradigm in which the transcription of RARα target genes is controlled by phosphorylation cascades initiated by the rapid RA activation of the p38MAPK/MSK1 pathway. We demonstrate that MSK1 phosphorylates RARα at S369 located in the ligand-binding domain, allowing the binding of TFIIH and thereby phosphorylation of the N-terminal domain at S77 by cdk7/cyclin H. MSK1 also phosphorylates histone H3 at S10. Finally, the phosphorylation cascade initiated by MSK1 controls the recruitment of RARα/TFIIH complexes to response elements and subsequently RARα target gene activation. Cancer cells characterized by a deregulated p38MAPK/MSK1 pathway, do not respond to RA, outlining the essential contribution of the RA-triggered phosphorylation cascade in RA signalling

    Measurement of charged particle spectra in minimum-bias events from proton-proton collisions at root s =13 TeV

    Get PDF
    Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range vertical bar eta vertical bar 0.5 GeV in proton-proton collisions at a center-of-mass energy of root s = 13 TeV. Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic pp data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.Peer reviewe

    Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways

    No full text
    The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization
    corecore